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Frame of a Closed Subspace of 𝐿2(ℝ) ⊕𝐿2(ℝ) 
Generated by Translation of a Function 

Bijumon Ramalayathil 
 

Abstract— The concept of MRA in wavelet analaysis, MRA wavelets in the superspace 2 ( )L � ⊕ 2 ( )L �  and Frame MRA in 2 ( )L �  are 
now well known.  In this paper we discuss frame MRA in 2 ( )L � ⊕ 2 ( )L �   and frame of a closed subspace of 2 ( )L � ⊕ 2 ( )L �  
generated by translation of a function.  

Index Terms— Wavelet, MRA wavelets, Bessel map, Frames in Hilbert Space, Frame MRA, Frame of a Closed Subspace of the 
Superspace.   
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1 INTRODUCTION                                                                     
N what follows 2 ( )L � denotes the Hilbert space of square 
integrable functions defined on � . The superspace 2 ( )L �
⊕ 2 ( )L �   is the Hilbert space under the inner product de-

fined by 

The applications of wavelet theory and frame theory to sig-
nal processing and image processing are now well known.  
Probably the main reason for the success of the wavelet theory 
was the introudction of the concept of multiresolution analysis 
(MRA) [1] which provides the right frame work to construct 
orthogonal wavelt bases with good localization properties.   It 
was shown in [2] that wavelets in the superspaces cannot be 
constructed through MRA in the usual sense.  However, by 
modifying the usual dilation and translation operators, MRA 
wavelets in the superspace 2 2( ) ( )L L⊕� �  have been con-
structed in [3].  Proceeding in the same line, we describe frame 
of a closed subspace of 2 2( ) ( )L L⊕� � generated by translation 
of a function and define Frame MRA in the superspace. 

2 DEFINITIONS 
The Fourier transform on  2 2( ) ( )L L⊕� � is defined by 

 
^

1 2 1 2
ˆ ˆ( , ) ( , ),f f f f=  

where  
1ˆ, ( ) ( ) 1, 2.
2

it
i if f t e dt iγγ γ

π
−∀ ∈ = =∫

�

�  (1) 

Taking { }2
1 2exp( 2 /3), ,i C z zω p ω ω= − = = =  is a cycle [4]; 

i.e., a periodic orbit for the map  2z z  on the unit circle T. 
The translation operator CT  and dilation operator CU  on 

2 2( ) ( )L L⊕� � are given by 

 
2

1 2 1 2( ) ,CT f f Tf Tfω ω⊕ = ⊕                                          (1) 

 1 2 2 1( )CU f f Uf Uf⊕ = ⊕  (2) 
where  T   and  U   are the translation and dilation operators 
on 2 ( )L � defined by: 

         ( ) ( 1)Tf x f x= − and   ( )( ) 2 (2 ).Uf x f x=  
With ( ) ,ikt

ke t e=  for  2 ( )f L∈ �  we have  

 � ˆk
kT f e f=  

and  � 1 ˆ.Uf U f−=  

 A countable collection { }:i iX x x i′= ⊕ ∈�   is a frame for 
2 2( ) ( )L L⊕� �  if there exist constants , 0A B >  such that 

 
2 2 2

22
1 2 1 2( ) ( ) ( )

, i iL L l
i

A f f f f x x
⊕

∈

′⊕ ≤ ⊕ ⊕∑� � �
�   

  2 2

2
1 2 ( ) ( )

,
L L

B f f
⊕

≤ ⊕
� �

 

for every 1 2f f⊕ ∈ 2 2( ) ( )L L⊕� � .  If A B= , the frame is a tight 

frame. 

  Let { }:i iX x x i′= ⊕ ∈�  be a countable system in the sepa-
rable Hilbert space 2 2( ) ( )L L⊕� � .  If the map  
 2 2 2: ( ) ( ) ( )L L l⊕ →� � �L  
 { }1 2 1 2 , :i if f f f x x i′⊕ ⊕ ⊕ ∈: �  
is well defined in the sense that it takes values in 2 ( )l � , then 
L  is the Bessel map associated with X.  Whenever the Bessel 
map L  exists, L  is bounded by the uniform boundedness 
principle [5].  The adjoint of L  is given by 

 
* 2 2 2: ( ) ( ) ( )l L L→ ⊕� � �L  

 
.i ii

c c x x
∈

′⊕∑ �
  

3 RESULTS 
The following result is a special case of the proposition in [6]. 
Proposition 1.  
 Let  { } 2 2: ( ) ( )i iX x x i L L′= ⊕ ∈ ⊆ ⊕� � �  be a countable system 

with a well-defined Bessel map 2 2 2: ( ) ( ) ( )L L l⊕ →� � �L .   

I 
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Assume { } 2 2span : ( ) ( ).i ix x i L L′⊕ ∈ = ⊕� � �     Then for every 

1 2f f⊕ ∈ 2 2( ) ( ),L L⊕� �  

 
2 2 2

22
1 2 1 2( ) ( ) ( )

, i iL L l
i

A f f f f x x
⊕

∈

′⊕ ≤ ⊕ ⊕∑� � �
�

  

  2 2

2
1 2 ( ) ( )L L

B f f
⊕

≤ ⊕
� �

       

if and only if for every  ( )*( ) ,c N L
⊥

∈  

 
2 22 2

22 2*
( ) ( )( ) ( )

( ) .
l lL L

A c c B c
⊕

≤ ≤
� �� �

L        

i.e.,  X   is a frame if and only if  *L  is bounded and invertible. 
Proposition  2. 
Let  { } 2 2

1 2 : ( ) ( )k
CX T k L Lφ φ= ⊕ ∈ ⊂ ⊕� � �   and define 

      

2

1 1̂( ) ( 2 )
k

kγ φ γ π
∈

Φ = +∑
�

  and  
2

2 2̂( ) ( 2 ) .
k

kγ φ γ π
∈

Φ = +∑
�

   

Assume that the Bessel map L  associated with  X  exists.  If  

1 AΦ ≤  and  2 BΦ ≤  a.e., then 1/ 2( ) .A B≤ +L   Conversely, 
1/ 2C≤L   implies  1 CΦ ≤  and  2 CΦ ≤  a.e. 

Proof  Let  c be a finitely generated sequence. Then 
                                               

�

�

22* *

2

1 2

2 2
2

1 2

( ) ( )

.

k
k C

k

k k
k k k k

k k

c c

c T

c e c e

φ φ

ω ω

∈

∈ ∈

=

= ⊕

= Φ + Φ

∑
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T T

�
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Note that  k
k k

k
c eω

∈
∑
�

 is the Fourier transform of the sequence 

2( ) ( )k
kc lω ∈ �  and  2k

k k
k

c eω
∈
∑
�

  is the Fourier transform of the 

sequence 2 2( ) ( ).k
kc lω ∈ �   Hence, by the Parseval-Plancherel 

theorem for T [7], we have   

 
2

2
2

( )

k k
k k kl

k
c c eω ω

∈

= ∑∫
T

�
�

 

and       

 
2

2
22 2

( )

k k
k k kl

k
c c eω ω

∈

= ∑∫
T

�
�

 

and both equal to 2

2

( )
( ) .k l
c

�
 

Thus, if  1 AΦ ≤  and  2 BΦ ≤  a.e. on T, then 

 * .A B< +L   

Since * ,=L L  it follows that 1/ 2( ) .A B≤ +L  

  For the converse, consider for 0δ > the set 
1 22 2[ ] [ ].C Cδ δΓ = Φ ≥ + ∪ Φ ≥ +   Now, for any measurable set  
,Γ ⊆ T  there exists a sequence { }np of trigonometric polyno-

mials with 2

2

( )n L
p ≤ Γ

T
 such that { }np converges to χΓ  (the 

characteristic function of the set Γ ) except on a set of arbitrari-
ly small measure.  Thus, if the measure Γ   of Γ  was strictly 
greater than 0, there would be a finitely supported sequence c 

with 2

2

( )l
c ≤ Γ

�
  such that 

 
2*

2( ) ( ).c C δ≥ Γ +L  

Hence 

 
2* .C≥L  

Theorem 3. 
Let  { } 2 2

1 2 : ( ) ( )k
CX T k L Lφ φ= ⊕ ∈ ⊂ ⊕� � �   and assume 

2

1 1̂( ) ( 2 )
k

kγ φ γ π
∈

Φ = +∑
�

  and  
2

2 2̂( ) ( 2 ) ( ).
k

k Lγ φ γ π ∞

∈

Φ = + ∈∑ T
�

  

Then X has a well defined Bessel map L .  Further, taking 
 { }1 1 1inf : [ ] [ 0] 0 ,A a a= Φ ≤ ∩ Φ > >   

 
{ }2 2 2inf : [ ] [ 0] 0 ,A a a= Φ ≤ ∩ Φ > >  

 1 1esssup ,BΦ = < ∞  
and  

 2 2esssup ,BΦ = < ∞  

X   is a frame for  { }0 1 2span :k
CV T kφ φ= ⊕ ∈� 2 2( ) ( )L L⊂ ⊕� �

 
 

with lower frame  bound greater than or equal to 1 2 0A A+ >
 

and upper frame bound less than or equal to 1 2 .B B+ < ∞  [This 

frame is the frame generated by 1 2.φ φ⊕ ]
 

Proof 
1Φ  and 2Φ  are essentially bounded implies that there are 

1 0C >  and 2 0C >  such that 1 1( )x CΦ < and 2 2( )x CΦ <  a.e. 
Taking  

 1 2max{ , }
2
C C C=   

we obtain 

         1 2
C

Φ ≤    and   2 2
C

Φ ≤    a.e.  

Hence by Proposition 2,   

 

1/ 2.C<L  

Hence L  takes values in 2 ( )l �  and hence L  is well defined.
  
 

By the definition of 0 ,V  { }1 2 :k
CT kφ φ⊕ ∈�

 
 is complete in 0V .   

For 2 ( )c l∈ �  

  
2 2

2* 2
1 2( ) .k k

k k k k
k k

c c e c eω ω
∈ ∈

= Φ + Φ∑ ∑∫ ∫
T T� �

L  

 Now for the values 1 2 1 2, , ,A A B B chosen above, 

 
2 2

22 2*
1 2 1 2( ) ( )

( ) ( ) ( ) .
l l

A A c c B B c+ ≤ ≤ +
� �

L  

Consequently,  X  is a frame with lower frame bound greater 
than or equal to 1 2A A+  and upper frame bound less than or 
equal to 1 2.B B+  
Corollary 4.   For 0 1 2 1, , , ,X V A A B  and 2B  as in Theorem 3, if 

1 2 1 2 ,A A B B+ = +  then X is a tight frame for 0V  with bound 
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1 2.A A+  
Proposition 5. Suppose { } 2 2

1 2 : ( ) ( )k
CT k L Lφ φ⊕ ∈ ⊂ ⊕� � �   is a 

frame for its closed span 0.V   Then 

1 2 0 1 1 1
ˆ ˆf f V f Ff⊕ ∈ ⇒ =  and 2 2 2

ˆ ˆ ,f F f=  

for some 2
1 2, ( )F F L∈ T  depending on 2 2

1 2 ( ) ( ).f f L L⊕ ∈ ⊕� �
 

Conversely, if 1 1 1
ˆ ˆf Ff=  and 2 2 2

ˆ ˆf F f=   with  1
ˆ( )k

kF c ω=   and 
2

2
ˆ( )k

kF c ω=  for some sequence 2( ) ( ),kc l∈ �  then 1 2 0.f f V⊕ ∈  
Proof 
Since  { }1 2 :k

CT kφ φ⊕ ∈�
 

is a frame for its closed span 0 ,V   

1 2 0f f V⊕ ∈
 
 implies 

                        
1 2 1 2

k
k C

k
f f c T ff

∈

⊕ = ⊕∑
�

 

for some sequence 2( ) ( ).kc c l= ∈ �  
Fourier transform of this equation gives 

                          1 1 1
ˆ ˆf Ff=    and  2 2 2

ˆ ˆ ,f F f=  

where  1
k

k k
k

F c eω
∈

=∑
�

  and 2
2 .k

k k
k

F c eω
∈

=∑
�

    The fact that 1F  

and 2
2 ( )F L∈ T  follows from Parseval's theorem [7], noting that

1F  is the Fourier transform of the sequence ( )k
kc ω  and 2F  that 

of 2( ).k
kc ω  

Conversely, if 

             1 1
ˆ ˆk

k k
k

f c eω f
∈

=∑
�

   and  2
2 2

ˆ ˆ ,k
k k

k
f c eω f

∈

=∑
�

 

then 

 ( )^

1 1
ˆ k k

k
k

f c Tω f
∈

=∑
�

   and  ( )^2
2 2

ˆ .k k
k

k
f c Tω f

∈

=∑
�

 

Hence 
 1 1

k k
k

k
f c Tω f

∈

=∑
�

   and  2
2 2

k k
k

k
f c Tω f

∈

=∑
�

 

and so 
 1 2 1 2 0.k

k C
k

f f c T Vff
∈

⊕ = ⊕ ∈∑
�

 

Definitiion 1.  A frame MRA (FMRA) { }1 2,jV φ φ⊕   of 
2 2( ) ( )L L⊕� �  is an increasing sequence of closed subspaces 

2 2( ) ( )jV L L⊂ ⊕� �   and an element 1 2 0Vφ φ⊕ ∈  for which the 
following hold: 
(1)   2 2( ) ( )j

j

V L L= ⊕� �   and  { }(0, 0) ,j
j

V =  

(2)   1 2 1 2 1 ,j C jf f V U f f V j+⊕ ∈ ⇔ ⊕ ∈ ∀ ∈�  

(3)  1 2 0 1 2 0 ,k
Cf f V T f f V k⊕ ∈ ⇔ ⊕ ∈ ∀ ∈�  

(4)  { }1 2 :k
CT kφ φ⊕ ∈�  is a frame for the subspace 0.V  

Proposition 6.  Let { }1 2,jV φ φ⊕  be an FMRA.  If 

{ }1 2 :k
CT kφ φ⊕ ∈�  is a frame for 0 ,V  then the system 

{ }1 2 :j k
C CU T kφ φ⊕ ∈�  is a frame for jV  with the same 

frame bounds. 
Proof 

{ }1 2 :k
CT kφ φ⊕ ∈�  is a frame for 0V  implies that there exist A  

and B (both greater than zero) such that for all 1 2 0 ,f f V⊕ ∈   

 

22
1 2 1 2 1 2, k

C
k

A f f f f T ff
∈

⊕ ≤ ⊕ ⊕∑
�

 2
1 2B f f≤ ⊕ .      

Also, for j∈� , 

                 { } { }1 2 0 1 2: :k j k
C C C jT k V U T k Vφ φ φ φ⊕ ∈ ⊆ ⇔ ⊕ ∈ ⊆� � . 

Also,  

 ( )*j j
C CU U −=  for j∈� . 

Hence for 1 2 ,jf f V⊕ ∈  

       
2 2

1 2 1 2 1 2 1 2, , .j k j k
C C C C

k k
f f U T U f f Tffff   −

∈ ∈

⊕ ⊕ = ⊕ ⊕∑ ∑
� �

 (1) 

Since 1 2 0
j

CU f f V− ⊕ ∈  and { }1 2 :k
CT kφ φ⊕ ∈� is a frame for 0V , 

we have 

  

22

1 2 1 2 1 2,j j k
C C C

k
A U f f U f f T ff − −

∈

⊕ ≤ ⊕ ⊕∑
�

 
2

1 2
j

CB U f f−≤ ⊕ .      

But, 

   
2 2

1 2 1 2 .j
CU f f f f− ⊕ = ⊕

      
Hence, using (1), we obtain  

         
22

1 2 1 2 1 2, j k
C C

k
A f f f f U T ff

∈

⊕ ≤ ⊕ ⊕∑
�

 2
1 2B f f≤ ⊕ .      

Thus { }1 2 :j k
C CU T kφ φ⊕ ∈�  is a frame for jV  with the same 

frame bounds of the frame { }1 2 :k
CT kφ φ⊕ ∈�  of 0V . 

Proposition 7.  Suppose { }1 2,jV φ φ⊕  be an FMRA of 
2 2( ) ( ).L L⊕� �   Then there are 2π -periodic functions 0H ′  and 

0H ′′  belong to 2 ( )L T  such that  

 1 0 2
ˆ ˆ(2 ) Hφ φ′⋅ =            

and     
 2 0 1

ˆ ˆ(2 ) .Hφ φ′′⋅ =            
Also 

 2 2
1 0 2 0 22 2 2 2( ) ( ) ( ) ( )H H π π⋅ ⋅ ⋅ ⋅′ ′Φ = Φ + + Φ +           

and 

 2 2
2 0 1 0 12 2 2 2( ) ( ) ( ) ( ).H H π π⋅ ⋅ ⋅ ⋅′′ ′′Φ = Φ + + Φ +  

Proof   1V  is closed and invariant under translations.  So 

0 1V V⊆  if and only if  1 2 1.Vφ φ⊕ ∈   As { }1 2 :k
C CU T kφ φ⊕ ∈�  is a 

frame for 1,V  we have 

 1 2 1 2.
k

k C C
k

c U Tφ φ φ φ
∈

⊕ = ⊕∑
�

 

Taking the Fourier transforms on both sides, we obtain 
 1 2 ^

1 2
ˆ ( ) ,k k

k
k

c U Tφ ω φ−

∈

= ∑
�

 

and      
 1 ^

2 1
ˆ ( ) ,k k

k
k

c U Tφ ω φ−

∈

= ∑
�

 

implies 
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 1 0 2
ˆ ˆ(2 ) Hφ φ′⋅ =  

and  
 2 0 1

ˆ ˆ(2 ) ,Hφ φ′′⋅ =  

where  2
0

1
2

k
k k

k
H c eω

∈

′ = ∑
�

   and  0
1
2

k
k k

k
H c eω

∈

′′ = ∑
�

  both be-

long to 2 ( ).L T  
 Now we periodize the square modulus of 
 1 0 2 2

ˆ ˆ( ) ( ) :Hφ φ ⋅′⋅ =           

( ) ( )
2 222 2

1 0 22 2
ˆ ˆ( 2 ) k k

k k
k H π πφ π φ⋅+ ⋅+

∈ ∈

′⋅ + =∑ ∑
� �

 

 ( ) ( )
22

0 22 2
ˆ 2

k
H kφ π⋅ ⋅

∈

′= +∑
�

  

( ) ( )
22

0 22 2
ˆ 2

k
H kπ φ π π⋅ ⋅

∈

′+ + + +∑
�

 

That is, 

  2 2
1 0 2 0 22 2 2 2( ) ( ) ( ) ( )H H π π⋅ ⋅ ⋅ ⋅′ ′Φ = Φ + + Φ +  .        

Similarly, we obtain 

 2 2
2 0 1 0 12 2 2 2( ) ( ) ( ) ( ).H H π π⋅ ⋅ ⋅ ⋅′′ ′′Φ = Φ + + Φ +  

4 CONCLUSION 
In this paper the concept of Bessel map has been used to de-
fine Frame MRA and for the discussion of frame generated by 
translation of a function in a closed subspace of the super-
space. The study of these concepts are important in the con-
struction of FMRA in the superspaces. 
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