Frame of a Closed Subspace of $L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})$ Generated by Translation of a Function

Bijumon Ramalayathil

Abstract

The concept of MRA in wavelet analaysis, MRA wavelets in the superspace $L^{2}(\square) \oplus L^{2}(\square)$ and Frame MRA in $L^{2}(\square)$ are now well known. In this paper we discuss frame MRA in $L^{2}(\square) \oplus L^{2}(\square)$ and frame of a closed subspace of $L^{2}(\square) \oplus L^{2}(\square)$ generated by translation of a function.

Index Terms-Wavelet, MRA wavelets, Bessel map, Frames in Hilbert Space, Frame MRA, Frame of a Closed Subspace of the Superspace.

1 Introduction

I
TN what follows $L^{2}(\square)$ denotes the Hilbert space of square integrable functions defined on \square. The superspace $L^{2}(\square)$ $\oplus L^{2}(\square)$ is the Hilbert space under the inner product defined by

$$
\left\langle\left(f_{1}, f_{2}\right),\left(g_{1}, g_{2}\right)\right\rangle_{L^{2}(\square) \oplus L^{2}(\square)}=\left\langle f_{1}, g_{1}\right\rangle_{L^{2}(\square)}+\left\langle f_{2}, g_{2}\right\rangle_{L^{2}(\square)}
$$

The applications of wavelet theory and frame theory to signal processing and image processing are now well known. Probably the main reason for the success of the wavelet theory was the introudction of the concept of multiresolution analysis (MRA) [1] which provides the right frame work to construct orthogonal wavelt bases with good localization properties. It was shown in [2] that wavelets in the superspaces cannot be constructed through MRA in the usual sense. However, by modifying the usual dilation and translation operators, MRA wavelets in the superspace $L^{2}(\square) \oplus L^{2}(\square)$ have been constructed in [3]. Proceeding in the same line, we describe frame of a closed subspace of $L^{2}(\square) \oplus L^{2}(\square)$ generated by translation of a function and define Frame MRA in the superspace.

2 Definitions

The Fourier transform on $L^{2}(\square) \oplus L^{2}(\square)$ is defined by

$$
\left(f_{1}, f_{2}\right)^{\wedge}=\left(\hat{f}_{1}, \hat{f}_{2}\right)
$$

where

$$
\forall \gamma \in \square, \quad \hat{f}_{i}(\gamma)=\frac{1}{\sqrt{2 \pi}} \int_{\square} f_{i}(t) e^{-i t \gamma} d t \quad i=1,2 .
$$

Taking $\omega=\exp (-2 \pi i / 3), \quad C=\left\{z_{1}=\omega, z_{2}=\omega^{2}\right\}$ is a cycle [4]; i.e., a periodic orbit for the map $z \mapsto z^{2}$ on the unit circle T. The translation operator T_{C} and dilation operator U_{C} on $L^{2}(\square) \oplus L^{2}(\square)$ are given by

- Bijumon Ramalayathil is currently Assistant Professor in Post Graduate Department of Mathematics, Mahatma Gandhi College, Iritty, Kerala, India, PH-07560967926. E-mail:bijumon.iritty@gmail.com

$$
\begin{align*}
& T_{C}\left(f_{1} \oplus f_{2}\right)=\omega T f_{1} \oplus \omega^{2} T f_{2}, \tag{1}\\
& U_{C}\left(f_{1} \oplus f_{2}\right)=U f_{2} \oplus U f_{1} \tag{2}
\end{align*}
$$

where T and U are the translation and dilation operators on $L^{2}(\square)$ defined by:

$$
T f(x)=f(x-1) \text { and } \quad(U f)(x)=\sqrt{2} f(2 x)
$$

With $e_{k}(t)=e^{i k t}$, for $f \in L^{2}(\square)$ we have

A countable collection $X=\left\{x_{i} \oplus x_{i}^{\prime}: i \in \square\right\} \quad$ is a frame for $L^{2}(\square) \oplus L^{2}(\square)$ if there exist constants $A, B>0$ such that

$$
\begin{aligned}
A\left\|f_{1} \oplus f_{2}\right\|_{L^{2}(\square) \oplus L^{2}(\square)}^{2} & \leq \sum_{i \in \square} \mid\left\langle f_{1} \oplus f_{2}, x_{i} \oplus x_{i}^{\prime}\right\rangle \|_{L^{2}(\square)}^{2} \\
& \leq B\left\|f_{1} \oplus f_{2}\right\|_{L^{2}(\square) \oplus L^{2}(\square)}^{2},
\end{aligned}
$$

for every $f_{1} \oplus f_{2} \in L^{2}(\square) \oplus L^{2}(\square)$. If $A=B$, the frame is a tight frame.

Let $X=\left\{x_{i} \oplus x_{i}^{\prime}: i \in \square\right\}$ be a countable system in the separable Hilbert space $L^{2}(\square) \oplus L^{2}(\square)$. If the map

$$
\mathcal{L}: L^{2}(\square) \oplus L^{2}(\square) \rightarrow I^{2}(\square)
$$

$$
f_{1} \oplus f_{2} \mapsto\left\{\left\langle f_{1} \oplus f_{2}, x_{i} \oplus x_{i}^{\prime}\right\rangle: i \in \square\right\}
$$

is well defined in the sense that it takes Y qajues in $l^{2}(\square)$, then \mathcal{L} is the Bessel map associated with X. Whenever the Bessel map \mathcal{L} exists, \mathcal{L} is bounded by the uniform boundedness principle [5]. The adjoint of \mathcal{L} is given by

$$
\begin{gathered}
\mathcal{L}^{*}: l^{2}(\square) \rightarrow L^{2}(\square) \oplus L^{2}(\square) \\
c \mapsto \sum_{i \in \square} c_{i} x_{i} \oplus x^{\prime} .
\end{gathered}
$$

3 Results

The following result is a special case of the proposition in [6]. Proposition 1.
Let $X=\left\{x_{i} \oplus x_{i}^{\prime}: i \in \square\right\} \subseteq L^{2}(\square) \oplus L^{2}(\square)$ be a countable system with a well-defined Bessel map $\mathcal{L}: L^{2}(\square) \oplus L^{2}(\square) \rightarrow l^{2}(\square)$.

Assume $\overline{\operatorname{span}}\left\{x_{i} \oplus x_{i}^{\prime}: i \in \square\right\}=L^{2}(\square) \oplus L^{2}(\square)$. Then for every $f_{1} \oplus f_{2} \in L^{2}(\square) \oplus L^{2}(\square)$,

$$
\begin{aligned}
A\left\|f_{1} \oplus f_{2}\right\|_{L^{2}(\square) \oplus L^{2}(\square)}^{2} & \leq \sum_{i \in \square} \mid\left\langle f_{1} \oplus f_{2}, x_{i} \oplus x_{i}^{\prime}\right\rangle \|_{L^{2}(\square)}^{2} \\
& \leq B\left\|f_{1} \oplus f_{2}\right\|_{L^{2}(\square) \oplus L^{2}(\square)}^{2}
\end{aligned}
$$

if and only if for every $c \in\left(N\left(L^{*}\right)\right)^{\perp}$,

$$
A\|c\|_{l^{2}(\square)}^{2} \leq\left\|\mathcal{L}^{*}(c)\right\|_{L^{2}(\square) \oplus L^{2}(\square)}^{2} \leq B\|c\|_{l^{2}(\square)}^{2} .
$$

i.e., X is a frame if and only if \mathcal{L}^{*} is bounded and invertible.

Proposition 2.

Let $X=\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subset L^{2}(\square) \oplus L^{2}(\square)$ and define

$$
\Phi_{1}(\gamma)=\sum_{k \in \square}\left|\hat{\phi}_{1}(\gamma+2 \pi k)\right|^{2} \text { and } \Phi_{2}(\gamma)=\sum_{k \in \square}\left|\hat{\phi}_{2}(\gamma+2 \pi k)\right|^{2} .
$$

Assume that the Bessel map \mathcal{L} associated with X exists. If $\Phi_{1} \leq A$ and $\Phi_{2} \leq B$ a.e., then $\|\mathcal{L}\| \leq(A+B)^{1 / 2}$. Conversely, $\|L\| \leq C^{1 / 2}$ implies $\Phi_{1} \leq C$ and $\Phi_{2} \leq C$ a.e.
Proof Let c be a finitely generated sequence. Then

$$
\begin{aligned}
\left\|L^{*}(c)\right\|^{2} & =\left\|\mathcal{L}^{k}(c)\right\|^{2} \\
& =\left\|\sum_{k \in \mathbb{C}} c_{k} T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\|^{2} \\
& =\int_{\mathbf{T}}\left|\sum_{k \in \square} c_{k} \omega^{k} e_{k}\right|^{2} \Phi_{1}+\int_{\mathbf{T}}\left|\sum_{k \in \square} c_{k} \omega^{2 k} e_{k}\right|^{2} \Phi_{2} .
\end{aligned}
$$

Note that $\sum_{k \in \square} c_{k} \omega^{k} e_{k}$ is the Fourier transform of the sequence $\left(c_{k} \omega^{k}\right) \in l^{2}(\square)$ and $\sum_{k \in \mathbb{\square}} c_{k} \omega^{2 k} e_{k}$ is the Fourier transform of the sequence $\left(c_{k} \omega^{2 k}\right) \in l^{2}(\square)$. Hence, by the Parseval-Plancherel theorem for \mathbf{T} [7], we have

$$
\left\|c_{k} \omega^{k}\right\|_{l^{2}(\square)}^{2}=\int_{\mathbf{T}}\left|\sum_{k \in \square} c_{k} \omega^{k} e_{k}\right|^{2}
$$

and

$$
\left\|c_{k} \omega^{2 k}\right\|_{l^{2}(\square)}^{2}=\int_{\mathbf{T} \mid}\left|\sum_{k \in \mathbb{\square}} c_{k} \omega^{2 k} e_{k}\right|^{2}
$$

and both equal to $\left\|\left(c_{k}\right)\right\|_{I^{(\square)}}^{2}$.
Thus, if $\Phi_{1} \leq A$ and $\Phi_{2} \leq B$ a.e. on T, then

$$
\left\|L^{*}\right\|<A+B
$$

Since $\|\mathcal{L}\|=\left\|\mathcal{L}^{*}\right\|$, it follows that $\|L\| \leq(A+B)^{1 / 2}$.
For the converse, consider for $\delta>0$ the set $\Gamma=\left[\Phi_{1} \geq C+\frac{\delta}{2}\right] \cup\left[\Phi_{2} \geq C+\frac{\delta}{2}\right]$. Now, for any measurable set $\Gamma \subseteq \mathbf{T}$, there exists a sequence $\left\{p_{n}\right\}$ of trigonometric polynomials with $\left\|p_{n}\right\|_{L^{2}(\mathbf{T})}^{2} \leq|\Gamma|$ such that $\left\{p_{n}\right\}$ converges to χ_{Γ} (the characteristic function of the set Γ) except on a set of arbitrarily small measure. Thus, if the measure $|\Gamma|$ of Γ was strictly greater than 0 , there would be a finitely supported sequence c
with $\|c\|_{l^{2}(\square)}^{2} \leq|\Gamma|$ such that

$$
\left\|\mathcal{L}^{*}(c)\right\|^{2} \geq|\Gamma|\left(C+\frac{\delta}{2}\right) .
$$

Hence

$$
\left\|\mathcal{L}^{*}\right\|^{2} \geq C
$$

Theorem 3.

Let $\quad X=\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subset L^{2}(\square) \oplus L^{2}(\square) \quad$ and assume $\Phi_{1}(\gamma)=\sum_{k \in \square}\left|\hat{\phi}_{1}(\gamma+2 \pi k)\right|^{2} \quad$ and $\quad \Phi_{2}(\gamma)=\sum_{k \in \square}\left|\hat{\phi}_{2}(\gamma+2 \pi k)\right|^{2} \in L^{\infty}(\mathbf{T})$.
Then X has a well defined Bessel map \mathcal{L}. Further, taking

$$
\begin{aligned}
& A_{1}=\inf \left\{a:\left[\left[\Phi_{1} \leq a\right] \cap\left[\Phi_{1}>0\right] \mid>0\right\},\right. \\
& A_{2}=\inf \left\{a:\left[\left[\Phi_{2} \leq a\right] \cap\left[\Phi_{2}>0\right] \mid>0\right\},\right. \\
& \operatorname{esssup} \Phi_{1}=B_{1}<\infty,
\end{aligned}
$$

and

$$
\text { esssup } \Phi_{2}=B_{2}<\infty
$$

$X \quad$ is a frame for $\quad V_{0}=\overline{\operatorname{span}}\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subset L^{2}(\square) \oplus L^{2}(\square)$ with lower frame bound greater than or equal to $A_{1}+A_{2}>0$ and upper frame bound less than or equal to $B_{1}+B_{2}<\infty$. [This frame is the frame generated by $\phi_{1} \oplus \phi_{2}$.]

Proof

Φ_{1} and Φ_{2} are essentially bounded implies that there are $C_{1}>0$ and $C_{2}>0$ such that $\left|\Phi_{1}(x)\right|<C_{1}$ and $\left|\Phi_{2}(x)\right|<C_{2}$ a.e. Taking

$$
\frac{C}{2}=\max \left\{C_{1}, C_{2}\right\}
$$

we obtain

$$
\Phi_{1} \leq \frac{C}{2} \quad \text { and } \quad \Phi_{2} \leq \frac{C}{2} \quad \text { a.e. }
$$

Hence by Proposition 2,

$$
\|\mathcal{L}\|<C^{1 / 2} .
$$

Hence \mathcal{L} takes values in $l^{2}(\square)$ and hence \mathcal{L} is well defined. By the definition of $V_{0},\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is complete in V_{0}. For $c \in l^{2}(\square)$

$$
\left\|\mathcal{L}^{*}(c)\right\|^{2}=\int_{\mathbf{T}}\left|\sum_{k \in \mathbb{D}} c_{k} \omega^{k} e_{k}\right|^{2} \Phi_{1}+\int_{\mathbf{T}}\left|\sum_{k \in \mathbb{D}} c_{k} \omega^{2 k} e_{k}\right|^{2} \Phi_{2} .
$$

Now for the values $A_{1}, A_{2}, B_{1}, B_{2}$ chosen above,

$$
\left(A_{1}+A_{2}\right)\|c\|_{1^{2}(\square)}^{2} \leq\left\|L^{*}(c)\right\|^{2} \leq\left(B_{1}+B_{2}\right)\|c\|_{1^{2}(\square)}^{2}
$$

Consequently, X is a frame with lower frame bound greater than or equal to $A_{1}+A_{2}$ and upper frame bound less than or equal to $B_{1}+B_{2}$.
Corollary 4. For $X, V_{0}, A_{1}, A_{2}, B_{1}$ and B_{2} as in Theorem 3, if $A_{1}+A_{2}=B_{1}+B_{2}$, then X is a tight frame for V_{0} with bound
$A_{1}+A_{2}$.
Proposition 5. Suppose $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subset L^{2}(\square) \oplus L^{2}(\square)$ is a frame for its closed span V_{0}. Then

$$
f_{1} \oplus f_{2} \in V_{0} \Rightarrow \hat{f}_{1}=F_{1} \hat{\phi}_{1} \text { and } \hat{f}_{2}=F_{2} \hat{\phi}_{2}
$$

for some $F_{1}, F_{2} \in L^{2}(\mathbf{T})$ depending on $f_{1} \oplus f_{2} \in L^{2}(\square) \oplus L^{2}(\square)$.
Conversely, if $\hat{f}_{1}=F_{1} \hat{\phi}_{1}$ and $\hat{f}_{2}=F_{2} \hat{\phi}_{2}$ with $F_{1}=\left(c_{k} \omega^{k} \hat{)}\right.$ and $F_{2}=\left(c_{k} \omega^{2 k}\right)$ for some sequence $\left(c_{k}\right) \in l^{2}(\square)$, then $f_{1} \oplus f_{2} \in V_{0}$.

Proof

Since $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for its closed span V_{0}, $f_{1} \oplus f_{2} \in V_{0}$ implies

$$
f_{1} \oplus f_{2}=\sum_{k \in \mathbb{1}} c_{k} T_{C}^{k} \phi_{1} \oplus \phi_{2}
$$

for some sequence $c=\left(c_{k}\right) \in l^{2}(\square)$.
Fourier transform of this equation gives

$$
\hat{f}_{1}=F_{1} \hat{\phi}_{1} \text { and } \hat{f}_{2}=F_{2} \hat{\phi}_{2},
$$

where $F_{1}=\sum_{k \in \mathbb{\square}} c_{k} \omega^{k} e_{k}$ and $F_{2}=\sum_{k \in \square} c_{k} \omega^{2 k} e_{k}$. The fact that F_{1} and $F_{2} \in L^{2}(\mathbf{T})$ follows from Parseval's theorem [7], noting that F_{1} is the Fourier transform of the sequence $\left(c_{k} \omega^{k}\right)$ and F_{2} that of $\left(c_{k} \omega^{2 k}\right)$.
Conversely, if

$$
\hat{f}_{1}=\sum_{k \in \square} c_{k} \omega^{k} e_{k} \hat{\phi}_{1} \text { and } \hat{f}_{2}=\sum_{k \in \square} c_{k} \omega^{2 k} e_{k} \hat{\phi}_{2}
$$

then

$$
\hat{f}_{1}=\sum_{k \in \square} c_{k} \omega^{k}\left(T^{k} \phi_{1}\right)^{\wedge} \quad \text { and } \quad \hat{f}_{2}=\sum_{k \in \square} c_{k} \omega^{2 k}\left(T^{k} \phi_{2}\right)^{\wedge}
$$

Hence

$$
f_{1}=\sum_{k \in \square} c_{k} \omega^{k} T^{k} \phi_{1} \quad \text { and } \quad f_{2}=\sum_{k \in \square} c_{k} \omega^{2 k} T^{k} \phi_{2}
$$

and so

$$
f_{1} \oplus f_{2}=\sum_{k \in \square} c_{k} T_{C}^{k} \phi_{1} \oplus \phi_{2} \in V_{0}
$$

Definition 1. A frame MRA (FMRA) $\left\{V_{j}, \phi_{1} \oplus \phi_{2}\right\}$ of $L^{2}(\square) \oplus L^{2}(\square)$ is an increasing sequence of closed subspaces $V_{j} \subset L^{2}(\square) \oplus L^{2}(\square)$ and an element $\phi_{1} \oplus \phi_{2} \in V_{0}$ for which the following hold:
(1) $\bigcup_{j} V_{j}=L^{2}(\square) \oplus L^{2}(\square)$ and $\bigcap_{j} V_{j}=\{(0,0)\}$,
(2) $f_{1} \oplus f_{2} \in V_{j} \Leftrightarrow U_{C} f_{1} \oplus f_{2} \in V_{j+1} \quad \forall j \in \square$,
(3) $f_{1} \oplus f_{2} \in V_{0} \Leftrightarrow T_{C}^{k} f_{1} \oplus f_{2} \in V_{0} \quad \forall k \in \square$,
(4) $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for the subspace V_{0}.

Proposition 6. Let $\left\{V_{j}, \phi_{1} \oplus \phi_{2}\right\}$ be an FMRA. If $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{0}, then the system $\left\{U_{C}^{j} T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{j} with the same
frame bounds.

Proof

$\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{0} implies that there exist A and B (both greater than zero) such that for all $f_{1} \oplus f_{2} \in V_{0}$,

$$
A\left\|f_{1} \oplus f_{2}\right\|^{2} \leq \sum_{k \in \square}\left|\left\langle f_{1} \oplus f_{2}, T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\rangle\right|^{2} \leq B\left\|f_{1} \oplus f_{2}\right\|^{2}
$$

Also, for $j \in \square$,

$$
\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subseteq V_{0} \Leftrightarrow\left\{U_{C}^{j} T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\} \subseteq V_{j}
$$

Also,

$$
\left(U_{C}^{j}\right)^{*}=U_{C}^{-j} \text { for } j \in \square
$$

Hence for $f_{1} \oplus f_{2} \in V_{j}$,

$$
\begin{equation*}
\sum_{k \in \square}\left|\left\langle f_{1} \oplus f_{2}, U_{C}^{j} T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\rangle\right|^{2}=\sum_{k \in \square}\left|\left\langle U_{C}^{-j} f_{1} \oplus f_{2}, T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

Since $U_{C}^{-j} f_{1} \oplus f_{2} \in V_{0}$ and $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{0}, we have

$$
A\left\|U_{C}^{-j} f_{1} \oplus f_{2}\right\|^{2} \leq \sum_{k \in \square}\left|\left\langle U_{C}^{-j} f_{1} \oplus f_{2}, T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\rangle\right|^{2} \leq B\left\|U_{C}^{-j} f_{1} \oplus f_{2}\right\|^{2}
$$

But,

$$
\left\|U_{C}^{-j} f_{1} \oplus f_{2}\right\|^{2}=\left\|f_{1} \oplus f_{2}\right\|^{2}
$$

Hence, using (1), we obtain

$$
A\left\|f_{1} \oplus f_{2}\right\|^{2} \leq \sum_{k \in \square}\left|\left\langle f_{1} \oplus f_{2}, U_{C}^{j} T_{C}^{k} \phi_{1} \oplus \phi_{2}\right\rangle\right|^{2} \leq B\left\|f_{1} \oplus f_{2}\right\|^{2}
$$

Thus $\left\{U_{C}^{j} T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{j} with the same frame bounds of the frame $\left\{T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ of V_{0}.
Proposition 7. Suppose $\left\{V_{j}, \phi_{1} \oplus \phi_{2}\right\}$ be an FMRA of $L^{2}(\square) \oplus L^{2}(\square)$. Then there are 2π-periodic functions H_{0}^{\prime} and $H_{0}^{\prime \prime}$ belong to $L^{2}(\mathbf{T})$ such that

$$
\hat{\phi}_{1}(2 \cdot)=H_{0}^{\prime} \hat{\phi}_{2}
$$

and

$$
\hat{\phi}_{2}(2 \cdot)=H_{0}^{\prime \prime} \hat{\phi}_{1} .
$$

Also

$$
\Phi_{1}=\left|H_{0}^{\prime}(\dot{\overline{2}})\right|^{2} \Phi_{2}\left(\frac{\dot{2}}{2}\right)+\left|H_{0}^{\prime}\left(\frac{\dot{2}}{2}+\pi\right)\right|^{2} \Phi_{2}(\dot{\overline{2}}+\pi)
$$

and

$$
\Phi_{2}=\left|H_{0}^{\prime \prime}(\dot{\overline{2}})\right|^{2} \Phi_{1}(\dot{\overline{2}})+\left|H_{0}^{\prime \prime}(\dot{\overline{2}}+\pi)\right|^{2} \Phi_{1}(\dot{\overline{2}}+\pi) .
$$

Proof $\quad V_{1}$ is closed and invariant under translations. So $V_{0} \subseteq V_{1}$ if and only if $\phi_{1} \oplus \phi_{2} \in V_{1}$. As $\left\{U_{C} T_{C}^{k} \phi_{1} \oplus \phi_{2}: k \in \square\right\}$ is a frame for V_{1}, we have

$$
\phi_{1} \oplus \phi_{2}=\sum_{k \in \mathbb{\square}} c_{k} U_{C} T_{C}^{k} \phi_{1} \oplus \phi_{2} .
$$

Taking the Fourier transforms on both sides, we obtain

$$
\hat{\phi}_{1}=\sum_{k \in \mathbb{\square}} c_{k} U^{-1}\left(\omega^{2 k} T^{k} \phi_{2}\right)^{\wedge}
$$

and

$$
\hat{\phi}_{2}=\sum_{k \in \square} c_{k} U^{-1}\left(\omega^{k} T^{k} \phi_{1}\right)^{\wedge},
$$

implies

$$
\hat{\phi}_{1}(2 \cdot)=H_{0}^{\prime} \hat{\phi}_{2}
$$

and

$$
\hat{\phi}_{2}(2 \cdot)=H_{0}^{\prime \prime} \hat{\phi}_{1},
$$

where $H_{0}^{\prime}=\frac{1}{\sqrt{2}} \sum_{k \in \square} c_{k} \omega^{2 k} e_{k} \quad$ and $\quad H_{0}^{\prime \prime}=\frac{1}{\sqrt{2}} \sum_{k \in \square} c_{k} \omega^{k} e_{k} \quad$ both belong to $L^{2}(\mathbf{T})$.

Now we periodize the square modulus of

$$
\begin{gathered}
\hat{\phi}_{1}(\cdot)=H_{0}^{\prime} \hat{\phi}_{2}(\dot{\overline{2}}): \\
\sum_{k \in \square}\left|\hat{\phi}_{1}(\cdot+2 \pi k)\right|^{2}=\sum_{k \in \square}\left|H_{0}^{\prime}\left(\frac{(+2 \pi k}{2}\right)\right|^{2}\left|\hat{\phi}_{2}\left(\frac{(+2 \pi k}{2}\right)\right|^{2} \\
=\left|H_{0}^{\prime}(\dot{\overline{2}})\right|^{2} \sum_{k \in \square}\left|\hat{\phi}_{2}(\dot{\overline{2}}+2 \pi k)\right|^{2} \\
\quad+\left|H_{0}^{\prime}(\dot{\overline{2}}+\pi)\right|^{2} \sum_{k \in \square}\left|\hat{\phi}_{2}(\dot{\overline{2}}+\pi+2 \pi k)\right|^{2}
\end{gathered}
$$

That is,

$$
\Phi_{1}=\left|H_{0}^{\prime}\left(\frac{\dot{\overline{2}}}{2}\right)\right|^{2} \Phi_{2}\left(\frac{\dot{2}}{2}\right)+\left|H_{0}^{\prime}\left(\frac{\dot{\zeta}}{2}+\pi\right)\right|^{2} \Phi_{2}\left(\frac{\overline{2}}{2}+\pi\right) .
$$

Similarly, we obtain

$$
\Phi_{2}=\left|H_{0}^{\prime \prime}\left(\frac{\dot{2}}{2}\right)\right|^{2} \Phi_{1}\left(\frac{1}{2}\right)+\left|H_{0}^{\prime \prime}\left(\frac{\dot{1}}{2}+\pi\right)\right|^{2} \Phi_{1}\left(\frac{-}{2}+\pi\right) .
$$

4 Conclusion

In this paper the concept of Bessel map has been used to define Frame MRA and for the discussion of frame generated by translation of a function in a closed subspace of the superspace. The study of these concepts are important in the construction of FMRA in the superspaces.

ACKNOWLEDGMENT

The author wish to thank Dr M.S. Balasubramani, Professor (Retd.), Department of Mathematics, University of Calicut, Kerala.

REFERENCES

1. S. Mallat, "A Theory of Multiresolution Approximations and Wavelet Orthornomral Basis of $L^{2}(\square)$," Tran. Amer. Math. Soc., 315 69-87 (1989).
2. D. Han and D. Larson, "Frames, bases and group representations," Memoirs of the AMS, Volume 147, Number 697, (2000).
3. Stefan Bildea and Dorin Ervin Dutkay and Gabriel Picioroaga, "MRA Super-Wavelets", New York Journal of Mathematics, 11:1-19, (2005).
4. D. E. Dutkay, "Positive definite maps, representations and frames", Reviews in Mathematical Physics, 164 (2004), 1-27.
5. Walter Rudin, "Functional Analysis" (Second Edition), Tata McGraw-Hill Publishing Company Ltd., New Delhi-8.
6. John J. Benedetto and Oliver M. Treiber, "Wavelet Frames: Multiresolution Analysis and Extension Principle", Birakauhser, Wavelet Transforms and TimeFrequency Signal Analysis -ed. Lokenath Debnath Pages Nos.3-36.
7. Jayakumar Ramanathan, "Methods of Applied Fourier Analysis", Birkhauser, Boston.
